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PRINCIPLES OF HARMONIC OSCILLATOR

Gravity Pendulum
All physical systems characterized by a 
parameter u(t) satisfying the differential 
equation :
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SPRING-MASS OSCILLATOR
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SPRING-MASS-FRICTION 
OSCILLATING CIRCUIT
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ELECTRICAL ANALOGY
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HARMONICS OSCILLATORS

In a conservative system : 

The total energy is constant The x strength is 
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SELF-SUSTAINED OSCILLATION : 
CONDITIONS
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SELF-SUSTAINED OSCILLATION
Van Der Pol’s equation

The coefficient of friction γ is a function of the amplitude x of the oscillation. The 
parameter γ is negative for the small amplitudes and positive for the large amplitudes. 
Only the module, and not the sign of the amplitude x has an importance. Therefore γ(x) is 
in x² .

γ 0 > 0 ; x0
reference 
amplitude
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Problem

« Experimentally, phonation tends to « kick in » and « kick 
out » in a more abrupt way than small amplitude theory would 
predict. Furthermore, the kicking in may occur at a higher 
value of pressure than the kicking out, as reported by Baer 
1975, suggesting a hysteresis (memory) for oscillation having 
previously been on or off. »

Ingo R. Titze.Phonation threshold pressure: A missing link in 
glottal aerodynamics JASA 1992;91:2926-2935.



G

RELAXATION OSCILLATOR
Seesaw.

Swing when the G center of 
gravity passes by the plan 
containing the axis of rotation

Level of filling

T1 T2 time The frequency is in 
direct relation with the 
flow of filling and 
draining

Output flow rate

time



ANOTHER TYPE OF RELAXATION 
OSCILLATOR

Tantalus cup used for time measurement during the Roman Empire

Hysteresis loop

When  water reaches the level H, the siphon primes, the tank is 
quickly emptied with a flow higher than  that of the filling, down to 
the level h of draining



NONLINEAR ELECTRICAL RESISTANCE

N v
The  non-linear N organ basically presents two 
resistances R1 and R2 without transition  according to 
the characteristics  fig. 1 and the cycle  fig.2 
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SIMPLEST ELECTRICAL RELAXATOR
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OSCILLATION INTERVAL

Relaxation oscillation require two conditions

1) The  system must progress and reach the high threshold -« Onset »- (V2)

2) The relaxation must reach the low threshold -« Offset »- (V1)

as in the phonation conditions (Onset and offset of phonation)
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FREQUENCY CONTROL
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AMPLITUDE CONTROL
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In the « neon » modelling, when 
V2 increases to V’2, then  
A2>A1. One must notice that 
the period increases T2>T1. 

In laryngeal vibration, the 
increase of the adduction 
force has two consequences 

1) Increase of the opening 
threshold, thus increase 
Amplitude

2) Increase of the stiffness of 
the spring (eq. 1/C), thus 
increase of the frequency 
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NON LINEAR RESISTANCE RELAXATOR 
AND OSCILLATING CIRCUIT

L = 0 : relaxatorNumerical simulation
U(t)
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Simulation by hysteresis method



VAN DER POL EQUATION
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The principles of relaxation oscillator
In a general way, the 
phenomenon of relaxation 
oscillation is demonstrated 
by any system presenting 
three characteristics : 
power supply, integrator 
and nonlinear resistance 
with hysteresis behavior

Power 
supply

Integrator
Nonlinear 

resistance with 
hysteresis

Regarding the phonation 
system, the intraglottic space 
can be grossly approximated 
by a box able to integrate 
airflow.

The glottis may present a 
nonlinear resistance with 
hysteresis to the airflow
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The glottisas a nonlinear resistance 
with hysteresis ?

Lateral vocal fold 
displacement

x

t

t

Intraglottal
pressure

0
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Intraglottal
pressure Estimated hysteresis loop

for small amplitude

The physics of small-amplitude 
oscillation of the vocal folds. Ingo R. 
Titze. J. Acoust.Soc. Am.83(4), April 
1988



Numerical simulation : simplifications

Lateral Force
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Simulation : Independent variables of the 
one degree of freedom model

Th2
• 1 spring

• 1 damping

• 1 mass

• The Bernoulli effect

• 2 thresholds of functioning

• Airflow supply

closing phase

Th1

opening phase



Parameter value of the one degree of 
freedom model of relaxator

d: depth

stiffness : k
l: length

Spring stiffness : k = 5.0 N/m 

Damping : r = 0.015 N.s/m

Surface of the vocal fold : S = l . e = 15.10-6 m2

Mass : m = 0.02 g

damping : r
e : thickness



Numerical simulation of a one mass 
model

Let us apply a pressure source about 
700 Pascal. The mass value is 0.01 g. 
The stiffness value is  5 N/m. The 
damping coefficient is 0.015.
Self oscillations are obtained. The 
waveform is of a relaxation type. The 
fundamental frequency is 90 Hz. The 
amplitude is 2 mm.

m
k

π2
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Numerical simulation of a one mass 
model

Let us increase the pulmonary 
pressure to 1000 Pa.
The frequency increased to 
142.5 Hz and the amplitude to 
2.07. The waveform is 
triangular shape.



Numerical simulation of a one mass 
model

Now let us increase the value of the 
mass to 0.05 g. The waveform is 
more sinusoidal. The frequency 
decreases to 77.5 Hz and the 
amplitude increases to 2.36mm.



Numerical simulation of a one mass 
model

Now let us examine some 
conditions where the 
oscillations fail. First case, 
insufficient Pressure : 500 Pa. 
Opening threshold can not be 
reached.



Numerical simulation of a one mass model

Second case, insufficient 
Bernoulli effect to reach 
the closure threshold. 



Vibration amplitude – Subglottal
Pressure relation

Parameters

Th1 = 0.1 mm
Th2 = 1 mm
M = 0.01g
k = 5 N/m
r  =  0.015 N.s/m
PB1 = -0.1xPSG
PB2 = -0.5xPSG



Frequency-subglottal pressure 
relation

Parameters

Th1 = 0.1 mm
Th2 = 1 mm
M = 0.01g
k = 5 N/m
r  =  0.015 N.s/m
PB1 = -0.1xPSG
PB2 = -0.5xPSG



Bowed string model analogy : Stick 
and slip

Frictional force vs
relative speed V
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…But more complex is the reality…
Experimental observations (personal works): Set up

•Conditions of asymmetry
•Electroglottography (EGG)
•Optoreflectometry

2 vocal folds Non linear interaction



Experimental observations: Results

Asynchronous 
vibration of 
the 2 folds

Right foldORM

EGG

Left fold

period 
doubling

Interaction of 
the vibration 
of the 2 folds. 

Chaos

MODELING : At least two non-linear coupled oscillators are needed



TWO COUPLED RELAXATORS

Lr Cr

Cm
Lm

Cl Ll ρ

Rt

rl rr

Es

A simplified electric model

Es ⇔ Source pressure
Rt⇔ Tracheal resistance
ri ⇔ Resistance generated by vocal fold 
friction
ρ ⇔ Non-linear glottic Impedance
Li ⇔ Fold mass
Ci ⇔ Fold elasticity
Lm ⇔ Shared mass
Cm ⇔ Shared elasticity

M. OUAKNINE. Non-linear behavior of vocal fold vibration :  Role of coupling.Advances in 
Quantitative Laryngoscopy, Voice and Speech Research 3rd International Workshop. 

Aachen june 19-20, 1998



Conclusions
• The model is consistent with main experimental studies about: 

–– functioning thresholdfunctioning threshold
–– dependence of amplitude an frequency on the dependence of amplitude an frequency on the subglottalsubglottal pressurepressure

• The conditions of self sustained oscillations are simple and clear

• The oscillation is made of the succession of different states. Each state can be describes by 
analytic equations. The transition between two successive states is abrupt. 

Future studies
•The mathematical relation between the glottis deformation as function of the 
intraglottal pressure is needed to produce a more analytical model such as that 
obeiyng to the van der pol equations.  

•The vocal register transition may be due to a drastic change of the values of the 
parameters (mass, stiffness, damping)

•The coupling between two relaxation oscillators may lead to non linear 
phenomenon such as bifurcations and chaos. 



Addum

The simulation in Visual Basic can be obtain form the authors : 

ouaknine@univ-aix.fr


	AN ATTEMPT TO MODEL THE GLOTTIS AS A VAN DER POL OSCILLATOR
	PRINCIPLES OF HARMONIC OSCILLATOR
	SPRING-MASS OSCILLATOR
	SPRING-MASS-FRICTION OSCILLATING CIRCUIT
	ELECTRICAL ANALOGY
	HARMONICS OSCILLATORS
	SELF-SUSTAINED OSCILLATION : CONDITIONS
	SELF-SUSTAINED OSCILLATIONVan Der Pol’s equation
	Problem
	RELAXATION OSCILLATOR
	ANOTHER TYPE OF RELAXATION OSCILLATOR
	NONLINEAR ELECTRICAL RESISTANCE
	SIMPLEST ELECTRICAL RELAXATOR
	OSCILLATION INTERVAL
	FREQUENCY CONTROL
	AMPLITUDE CONTROL
	NON LINEAR RESISTANCE RELAXATOR AND OSCILLATING CIRCUIT
	VAN DER POL EQUATION
	The principles of relaxation oscillator
	The glottis as a nonlinear resistance with hysteresis ?
	Numerical simulation : simplifications
	Simulation : Independent variables of the one degree of freedom model
	Parameter value of the one degree of freedom model of relaxator
	Numerical simulation of a one mass model
	Numerical simulation of a one mass model
	Numerical simulation of a one mass model
	Numerical simulation of a one mass model
	Numerical simulation of a one mass model
	Vibration amplitude – Subglottal Pressure relation
	Frequency-subglottal pressure relation
	Bowed string model analogy : Stick and slip
	…But more complex is the reality…Experimental observations (personal works): Set up
	TWO COUPLED RELAXATORS
	Conclusions
	Addum

