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Abstract 
Complementary physical and computational models were 
developed and studied in order to investigate the aerodynamic 
energy transfer mechanisms that facilitate self-sustained vocal 
fold vibration.  The physical model was fabricated using a 
flexible polyurethane compound.  The model size, shape, and 
material properties were generally similar to corresponding 
human vocal fold characteristics.  The numerical model was 
developed using geometry, boundary conditions, and material 
properties similar to those of the physical model.  Analysis of 
the numerical results support the hypothesis that a cyclic 
variation of the orifice profile from a convergent to a divergent 
shape leads to a temporal asymmetry in the average wall 
pressure, which is the key factor for the achievement of self-
sustained vocal fold oscillations. 

1. Introduction 
The primary mechanism of vocal fold vibration is a coupling 
between the air pressure and the tissue motion.  It has been 
shown [1] that the average intraglottal pressure must be greater 
during the opening phase than during the closing phase in 
order for there to be a positive net transfer of energy from the 
airflow to the vocal folds; a positive value is required to 
overcome damping within the vocal fold tissue.  It has been 
postulated [1] that one likely contributor to this pressure 
asymmetry is the converging-diverging motion of the medial 
surface of the vocal folds.   

The hypothesis that a cyclic converging/diverging orifice 
profile is needed for self-sustained vocal fold oscillations to be 
maintained was verified using complementary experimental 
and numerical methods.  The numerical model provided 
quantitiative flow data that could not be conveniently 
measured using physical experiments. 

2. Theory 
The kinetic energy balance for a control volume comprised of 
a fluid region is [2, 3]: 
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where E is the kinetic energy per unit volume, V is the control 
volume of interest, u is the fluid velocity, S is the control 
surface (Si and Se denote the inlet and exit surfaces, 
respectively), n is the unit vector normal to the control surface, 
τij is the fluid stress tensor, and φ is the viscous dissipation 
term.  Note that the influences of gravity and compressibility 

have been neglected in (1).  The terms in (1) have the 
following physical significance [2, 4]: 

I:  Rate of change of kinetic energy within the control 
volume. 

II: Rate of transport of kinetic energy out of the control 
volume through inlet and exit surfaces.  This term is 
zero along impermeable surfaces. 

III: Rate of work done by fluid stress on the 
surroundings.  This term is evaluated over the entire 
control volume surface. Normal and viscous forces 
are included in the stress term, τij.   

IV: Rate of kinetic energy dissipation due to fluid 
viscosity.   

Since the terms in (1) denote rates of energy transfer, or 
energy “flow,” they have units of power (J/s).  The energy 
transfer during a certain time period is calculated by 
integrating the terms in (1) over a specified time interval. 

Term III evaluated along the vocal fold surface represents 
the energy flow from the air stream to the solid tissue, and is 
the focus of the analysis presented below. 

3. Physical and Numerical Models 

3.1. Physical Model 

An artificial vocal fold model was fabricated using a flexible 
polyurethane compound, cast into an idealized shape of the 
vocal folds.  The shape, shown in Fig. 1, was patterned after 
that used by Scherer et al. [5].  The length scale was the same 
as that of the human vocal folds.  The Young’s modulus of the 
material was approximately 14 kPa.  The model oscillated at a 
frequency of approximately 120 Hz, with an onset pressure of 
approximately 1.2 kPa.  Details of the physical model 
construction, experimental setup, and behavior can be found in 
[3]. 

3.2. Numerical Model 

The finite element method was used to simulate the motion of 
the physical vocal fold model.  The commercial code ADINA 
(ADINA R&D, Inc., Boston, Massachusetts), which is 
designed for analyzing coupled fluid-structure systems, was 
used.  The computational domain is shown in Fig. 1.  The 
model size, shape, and material properties were defined based 
on the physical model.  The structural domain was two-
dimensional and allowed for large deformation and large strain 
by using a hyperelastic material model.  The fluid domain (air) 
was two-dimensional, laminar, and incompressible, and was 
governed by the Navier-Stokes equations; this allowed for 
flow separation and unsteady effects to be included.  The solid 
and fluid domains were fully coupled.  A fluctuating pressure, 
ps, was imposed along the inlet (AC).   The magnitude of ps, 
taken from experimental data, varied sinusoidally about a 
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mean value of 2 kPa with an amplitude of 1.2 kPa.  Further 
details are found in [3]. 

4. Numerical Results and Discussion 
Figure 2 shows the position of the solid domain surface over 
one oscillation period.  The medial surface profile was 
alternately convergent-divergent.  The significant inferior-
superior motion was a result of the solid domain having been 
defined using a homogeneous, isotropic material (as opposed 
to the multi-layer, anisotropic structure of the human vocal 
folds). 

Figure 3a shows the orifice width over one cycle.  Also 
shown in Fig. 3a is the “subglottal” pressure, ps, that was 
applied at the fluid domain inlet.  The orifice width varied 
from approximately 0.2 mm at the time of minimum opening 
to 2.8 mm at the maximum opening.  Note that the orifice 
width refers to the full orifice width (twice the distance 
between the point on the medial surface of the solid domain 
closest to the plane of symmetry in the fluid domain).  The 
local maximum at approximately t = 0.058 s coincided with 
the time during which the orifice was transitioning from a 
convergent to a divergent shape. 

Figure 3b is discussed separately below.  Figure 3c shows 
the rate of energy transfer to the solid domain over one period 
due to the total fluid stress; this quantity is equivalent to Term 
III in Eq. (1) evaluated along the solid domain surface.  Also 
shown are the individual contributions of the pressure and 
viscous stresses; the contribution of the viscous stresses was 
everywhere negligible, and the total energy transfer was 
nearly entirely due to the normal pressure.  The maximum 
contribution of the viscous stresses reached only about 1% of 
the maximum energy flow.   

The net area under the curve over one cycle in Fig. 3c is 
positive; approximately twice as much energy was imparted 
to the solid domain than what was recovered.  The remainder 
was dissipated in the solid due to viscous damping.   

Figures 4 through 6 show the wall position, the normal 
component of velocity, the wall pressure distribution, and the 
energy flow intensity (Term III) at three different times.  At 
time t = 0.0551 s (Fig. 4), the orifice was nearly closed, and 
the profile was slightly divergent and transitioning to a 
convergent shape.  The inlet pressure was approaching its 
maximum specified value.  The net energy flow to the 

structure was zero.  At the time of maximum energy flow to 
the structure (t = 0.0570 s; Fig. 5), the pressure was in phase 
with the surface velocity over most of the surface; thus the 
energy flow was distributed along nearly the entire length of 
the inferior and medial surfaces.  The orifice profile was 
convergent and the medial surface was slightly concave.  At 
the time of maximum energy flow from the solid to the flow (t 
= 0.0642 s; Fig. 6), the orifice profile was divergent and the 
orifice was closing.  The energy flow was negative since the 
velocity and pressure terms were out of phase.  The region of 
greatest energy transfer was near the medial, inferior tip 
(compare Figs. 6a and 6c).   

Figure 3b shows the spatially averaged pressure, pavg, 
where pavg is defined as 
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where L is the length of the vocal fold surface.  It can be seen 
from Fig. 3b that the average pressure was never negative.  
The time-averaged pressure, pmean, during positive energy flow 
to the solid (orifice opening) was greater (pmean = 1.3 kPa) than 
that during negative energy flow (orifice closing; pmean = 0.72 
kPa).  This is in agreement with the observation by Titze [1] 
that for self-sustained oscillations to be achieved, the net 
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Figure 2: Numerical model surface position. 
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Figure 1: Outline of the numerical domain.  The outlet along BH was located further downstream than what is shown. 



intraglottal pressure during closing must be either negative or 
“less positive” than the net intraglottal pressure during 
opening.   

In further agreement with Titze’s theory, a comparison 
between Figs. 5 and 6 shows that the energy flow to the 
structure is assisted by the medial surface convergent-
divergent motion.  When the profile was convergent (Fig. 5), 
the flow was attached and the magnitude of the pressure was 
significant over the entire medial surface of the solid (Fig. 5b).  
The energy flow was thus also significant over the medial 
surface of the solid (Fig. 5c).  When the profile was divergent 
(Fig. 6), the flow separated from the medial surface, causing 
the pressure to be nearly zero along a significant portion of the 
medial surface (Fig. 6b).  This resulted in the energy flow 
being confined to a smaller region along the vocal fold surface 
(Fig. 6c).  This temporal asymmetry in pressure distribution 

caused a similar temporal asymmetry in the energy flow, 
allowing for oscillations to be achieved. 

5. Conclusions 
Numerical simulations of a continuum vocal fold model were 
used to calculate the energy transferred from the fluid domain 
to the structural domain during one period of regular 
oscillations.  It was shown that the aerodynamic viscous 
effects only minimally contributed to the overall energy 
transfer.  It was further shown that the alternating convergent-
divergent orifice profile resulted in a greater net pressure 
within the orifice during orifice opening than during orifice 
closing.  This temporal asymmetry in net orifice pressure 
caused a temporal asymmetry in the energy flow to the solid 
domain, which allowed for oscillations to be maintained.  The 
results support the hypothesis that a cyclic variation of the 
orifice profile from a convergent to a divergent shape leads to 
a temporal asymmetry in the average wall pressure, which is 
the key factor for self-sustained oscillations of the vocal folds 
to be achieved. 
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Figure 4: Different quantities along the fold surface at 
time t = 0.0551 s. (a) ——: x vs. z; → : uini vs. z; (b) p vs. 
z; (c) uiτij(−nj) vs. z. 
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Figure 3: (a) –●–: Orifice width; –○–: Upstream pressure; 
(b) Spatially-averaged surface pressure; (c) Net rate of 
energy transfer to the surface due to total, pressure, and 
viscous stresses. ——: uiτij(−nj); · · ·: puini; – – –: uiτij(−nj) 
− puini.   
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Figure 6: Different quantities along the fold surface at 
time t = 0.0642 s. (a) ——: x vs. z; → : uini vs. z; (b) p vs. 
z; (c) uiτij(−nj) vs. z. 
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Figure 5: Different quantities along the fold surface at 
time t = 0.057 s. (a) ——: x vs. z; → : uini vs. z; (b) p vs. z; 
(c) uiτij(−nj) vs. z. 


